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BROWSER FINGERPRINTING ISSUES

* Fingerprinting is privacy issues

* Some browser vendors, like Tor Browser, are more interested in fixing fingerprinting

issues than Chrome, Firefox, Edge, etc.

* Examples: HSTS super cookie, CSS Visited, etc.




SNIFFLY ATTACK

* Discovered by Yan Zhu in 2015

* Abusing HSTS/301 redirect and CSP to probe user’s browsing history

 CVE-2016-1617




HTTP STRICT TRANSPORT SECURITY (HSTS)

* A browser security feature that enforces HTTPS for all connections for particular

domains

* Strict-Transport-Security: max-age=604800




CONTENT SECURITY POLICY (CSP)

* Security feature to mitigate XSS attacks

* Content-Security-Policy: script-src ‘self” www.google.com; img-src ‘self’; default-src ‘none’

* CSP is also used to enable other security features, like Upgrade Insecure Requests.



http://www.google.com/

HOW SNIFFLY WORKS

* Attacker embeds an image tag <img src=http://example.com>

* Attacker knows that example.com is either a HSTS domain or 301 redirects to HTTPS

* |f a visitor has never visited http://example.com:

/NS

http://example.com Location: https://example.com web page

https://github.com/diracdeltas/sniffly



http://example.com/
http://example.com/

HOW SNIFFLY WORKS

* |If a visitor has visited http://example.com:

NN

http://example.com Location: https://example.com web page



http://example.com/

HOW SNIFFLY WORKS

* If we can time how long it takes to receive the redirect response, we can distinguish if it’s

an in-browser redirect or a network redirect.
* Use CSP to allow http requests but block https requests:

* Content-Security-Policy: img-src http://example.com

. INTERMET

http://example.com Location: https://example.com

error event fired here



http://example.com/

HOW SNIFFLY WORKS

* If the error event is triggered within a threshold (10ms), it’s an internal redirect. Then

this URL has been visited before; otherwise, it has not been visited.




THE CODE SNIPPET

ool CSPSource: :schemeMatches(const KURL& url) const
{
if (m_scheme.isEmpty()})
return m_policy-»protocolMatchesSelf(url);
if (equallgnoringCase{m_scheme, "http"))
return equallgnoringCase{url.protocol{), "http") || equallgnoringCase{url.protocol(), "https");

if (equallgnoringCase{m_scheme, "ws"))

+ 4+ + o+

return equallgnoringCase{url.protocol{), "ws") || eguallgnoringCase({url.protocol(), "wss™):

return eguallgnoringCase{url.protocol(), m_scheme):

https://github.com/chromium/chromium/commit/568075bbc5d16239a5cbdeb579a8768f9836f1 3e




* Content-Security-Policy: img-src http://example.com

now matches both http://example.com and https://example.com



http://example.com/
http://example.com/
https://example.com/

BYPASSING THE FIX

* The code only considers the protocol, not port

e Consider this CSP rule:

Content-Security-Policy: img-src http://example.com:80

* Does it match https://example.com



http://example.com/

It turns out this CSP matches http://example.com:80 and https://example.com:80

It doesn’t match https://example.com:443

* So we can exploit Sniffly again!

CVE-2016-5137: https://bugs.chromium.org/p/chromium/issues/detail?id=625945

CVE-2016-907 | : https://bugzilla.mozilla.org/show bug.cgi?id=1285003

$1000 bounty



http://example.com/
https://example.com:80/
https://example.com/
https://bugs.chromium.org/p/chromium/issues/detail?id=625945
https://bugzilla.mozilla.org/show_bug.cgi?id=1285003

PATCH

bool CSPSource: :portMatches(const KURL& url) const
{
if (m_portWildcard == HasWildcard)

return true;

int port url.port();

if (port == m_port)

return true;

+ if (m_port == 80 && (port == 443 || (port == @ && defaultPortForProtocol{url.protocel()) == 443)))
return true;

+

https://github.com/chromium/chromium/commit/e6d 1814 17ea462ac221d768c960a21018266a4a8




CHANGE IN CSP SPECIFICATION

23 EEEE" index.src.html

b3 £ @2 -376,12 +376,18 @@ <h3 id="changes-from-level-2">Changes from Level 2<{/h3>

2, has been undeprecated, and a worker-src’ directive added. Both defer

to “child-src” if not present (which defers to “default-src” in turn).

- 3. Insecure schemes in source expressions now match their secure wvariants,
- and WebSocket schemes now match HTTP schemes. That is, “http:™ or “ws:”
- is eguivalent to “http: https:™, and "wss:” is eguivalent to " https:™.
- Similarly, “http://example.com” or “ws://example.com’ 1is eguivalent to

- “http: /fexample.com https:/fexample.com , and " wss://example.com 1is

eguivalent to " https://fexample.com .

3. The URL matching algorithm now treats insecure schemes and ports as
matching their secure wvariants. That is, the source expression
“http: /Sfexample.com:88° will match both “http://fexample.com:88° and
“https://example.com: 4437 .

+
+
+
+

https://github.com/w3c/webappsec-csp/commit/22d08b990290e49f5a666fad08de | 6d75bb36%e7




SECOND BYPASS

* So far both attacks use CSP to block the redirect

* Are there other ways to achieve the same!?

* Use Fetch API




FETCH API

A request has an associated redirect mode, which is "follow”, "error”, or "manual”. Unless stated otherwise, itis "follow".

“"follow"
Follow all redirects incurred when fetching a resource.

m L1
error

Return a network error when a request is met with a redirect.

"manual”

Retrieves an opaque-redirect filtered response when a request is met with a redirect so that the redirect can be followed manually.




FETCH API

let start_time = new Date();
fetch{url, {
method: “GET",
mode: “"no-cors™,
cache: "force-cache™,
redirect: "manual”
Hi.then{function (response) {
if (response.status == 381) {
let end time = new Date();
if (end_time - start_time < 18) {
alert{"visited");
T else {
alert{"not visited"};
¥
T else {
alert{"can't check™};

¥

11




FETCH API

* Reported in 2016. Not updated for more than 2 years.

* Silently fixed recently.

* In current Chrome,“no-cors” can’t be used together with “manual” redirect

@ vFetch API cannot load http://www.bankofamerica.com/. Request mode is "no-cors™ but the redirect mode is not "follow".

checkURL @ fetch.himl:31

(anonymous) @ fetch.hitml:64




TAKEAWAYS

* Reading disclosed vulnerability reports and the patches is helpful for finding new ones

* Try to find corner cases that developers may neglect to handle (e.g. explicit port in URL)

* Mainstream browser vendors are generally not interested in fixing fingerprint issues




ANOTHER VULNERABILITY

* This is not a fingerprinting issue. It is an example to show how | find a real vulnerability

by reading bug reports.

« CVE-2017-0135




CVE-2017-0135

* Inspired by paper “Abusing Internet Explorer 8's XSS Filters”, written by Eduardo Vela
Nava and David Lindsay

* How IE XSS Filter works: it checks if any URL parameter seems to be a XSS payload and

then checks if the parameter is contained in HTML response

* http://example.com/index.php?id=<script>alert(|)</script>

 If HTML body contains <script>alert(l)</script>, then it’s changed to
<sc#ipt>alert(l)</script>




CVE-2017-0135

What if it’s not a reflected XSS, but an expected |S code

E.g. example.com/index.php?<script src="jquery.js"></script>

<sc#tipt src="jquery.js"></script>

Then jquery.js won’t load

Seems harmless




CVE-2017-0135

* Abuse XSS Filter to disable CSP

* <meta http-equiv="Content-Security-Policy" content="script-src ‘self’">

* example.com/xss.html?<meta http-equiv="Content-Security-Policy” content="script-src ‘self’’>




CVE-2017-0135

<IDOCTYPE html:>
=l <html>
-] <head:>
<title»>CSP Test</title>
<meta http-equiv="Content-Security-Policy” content="script-src "self'":
</head>
- <bady>
<scriptralert(document.domain);</script:
</body>
</html>



CVE-2017-0135
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CVE-2017-0135

* Reported on December 2,2016. Fixed on March 14,2017.
* Bounty: $1500

* Microsoft removed XSS Filter in Edge in October 2018 Update
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Q&A

* Thank you for your listening!




