
TWO NEW WAYS TO
EXPLOIT A FIXED BROWSER
FINGERPRINTING FLAW

XIAOYIN LIU

BSIDES MUNICH 2019

MARCH 25, 2019

ABOUT ME

• Independent bug bounty hunter

• Graduated from University of North Carolina at Chapel Hill, United States

• Recognized by Microsoft, Google, Brave Browser, Tor Project and more

• Areas of interest: Windows applications, web browsers

OUTLINE

• Browser fingerprinting issues

• Background of a fingerprinting flaw, Sniffly

• First bypass

• Second bypass

• Takeaways

• CVE-2017-0135

BROWSER FINGERPRINTING ISSUES

• Fingerprinting is privacy issues

• Some browser vendors, like Tor Browser, are more interested in fixing fingerprinting

issues than Chrome, Firefox, Edge, etc.

• Examples: HSTS super cookie, CSS Visited, etc.

SNIFFLY ATTACK

• Discovered by Yan Zhu in 2015

• Abusing HSTS/301 redirect and CSP to probe user’s browsing history

• CVE-2016-1617

HTTP STRICT TRANSPORT SECURITY (HSTS)

• A browser security feature that enforces HTTPS for all connections for particular

domains

• Strict-Transport-Security: max-age=604800

CONTENT SECURITY POLICY (CSP)

• Security feature to mitigate XSS attacks

• Content-Security-Policy: script-src ‘self ’ www.google.com; img-src ‘self ’; default-src ‘none’

• CSP is also used to enable other security features, like Upgrade Insecure Requests.

http://www.google.com/

HOW SNIFFLY WORKS

• Attacker embeds an image tag

• Attacker knows that example.com is either a HSTS domain or 301 redirects to HTTPS

• If a visitor has never visited http://example.com:

https://github.com/diracdeltas/sniffly

http://example.com/
http://example.com/

HOW SNIFFLY WORKS

• If a visitor has visited http://example.com:

http://example.com/

HOW SNIFFLY WORKS

• If we can time how long it takes to receive the redirect response, we can distinguish if it’s

an in-browser redirect or a network redirect.

• Use CSP to allow http requests but block https requests:

• Content-Security-Policy: img-src http://example.com

http://example.com/

HOW SNIFFLY WORKS

• If the error event is triggered within a threshold (10ms), it’s an internal redirect. Then

this URL has been visited before; otherwise, it has not been visited.

THE CODE SNIPPET

https://github.com/chromium/chromium/commit/568075bbc5d16239a5cbdeb579a8768f9836f13e

• Content-Security-Policy: img-src http://example.com

now matches both http://example.com and https://example.com

http://example.com/
http://example.com/
https://example.com/

BYPASSING THE FIX

• The code only considers the protocol, not port

• Consider this CSP rule:

Content-Security-Policy: img-src http://example.com:80

• Does it match https://example.com

http://example.com/

• It turns out this CSP matches http://example.com:80 and https://example.com:80

• It doesn’t match https://example.com:443

• So we can exploit Sniffly again!

• CVE-2016-5137: https://bugs.chromium.org/p/chromium/issues/detail?id=625945

• CVE-2016-9071: https://bugzilla.mozilla.org/show_bug.cgi?id=1285003

• $1000 bounty

http://example.com/
https://example.com:80/
https://example.com/
https://bugs.chromium.org/p/chromium/issues/detail?id=625945
https://bugzilla.mozilla.org/show_bug.cgi?id=1285003

PATCH

https://github.com/chromium/chromium/commit/e6d181417ea462ac221d768c960a21018266a4a8

CHANGE IN CSP SPECIFICATION

https://github.com/w3c/webappsec-csp/commit/22d08b990290e49f5a666fad08de16d75bb369e7

SECOND BYPASS

• So far both attacks use CSP to block the redirect

• Are there other ways to achieve the same?

• Use Fetch API

FETCH API

FETCH API

FETCH API

• Reported in 2016. Not updated for more than 2 years.

• Silently fixed recently.

• In current Chrome, “no-cors” can’t be used together with “manual” redirect

TAKEAWAYS

• Reading disclosed vulnerability reports and the patches is helpful for finding new ones

• Try to find corner cases that developers may neglect to handle (e.g. explicit port in URL)

• Mainstream browser vendors are generally not interested in fixing fingerprint issues

ANOTHER VULNERABILITY

• This is not a fingerprinting issue. It is an example to show how I find a real vulnerability

by reading bug reports.

• CVE-2017-0135

CVE-2017-0135

• Inspired by paper “Abusing Internet Explorer 8's XSS Filters”, written by Eduardo Vela

Nava and David Lindsay

• How IE XSS Filter works: it checks if any URL parameter seems to be a XSS payload and

then checks if the parameter is contained in HTML response

• http://example.com/index.php?id=<script>alert(1)</script>

• If HTML body contains <script>alert(1)</script>, then it’s changed to

<sc#ipt>alert(1)</script>

CVE-2017-0135

• What if it’s not a reflected XSS, but an expected JS code

• E.g. example.com/index.php?<script src="jquery.js"></script>

• <sc#ipt src="jquery.js"></script>

• Then jquery.js won’t load

• Seems harmless

CVE-2017-0135

• Abuse XSS Filter to disable CSP

• <meta http-equiv="Content-Security-Policy" content=“script-src ‘self ’">

• example.com/xss.html?<meta http-equiv=”Content-Security-Policy” content=”script-src ‘self ’”>

CVE-2017-0135

CVE-2017-0135

CVE-2017-0135

• Reported on December 2, 2016. Fixed on March 14, 2017.

• Bounty: $1500

• Microsoft removed XSS Filter in Edge in October 2018 Update

REFERENCES

• https://chromium.googlesource.com/chromium/src/+/master/docs/security/faq.md

• https://zyan.scripts.mit.edu/presentations/toorcon2015.pdf

• https://bugs.chromium.org/p/chromium/issues/detail?id=544765

• https://bugs.chromium.org/p/chromium/issues/detail?id=625945

• https://fetch.spec.whatwg.org/

• http://p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf

• https://blogs.windows.com/windowsexperience/2018/07/25/announcing-windows-10-insider-

preview-build-17723-and-build-18204

https://zyan.scripts.mit.edu/presentations/toorcon2015.pdf
https://zyan.scripts.mit.edu/presentations/toorcon2015.pdf
https://bugs.chromium.org/p/chromium/issues/detail?id=544765
https://bugs.chromium.org/p/chromium/issues/detail?id=625945
https://fetch.spec.whatwg.org/
http://p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf
https://blogs.windows.com/windowsexperience/2018/07/25/announcing-windows-10-insider-preview-build-17723-and-build-18204

Q & A

• Thank you for your listening!

