TWO NEW WAYS TO
EXPLOIT A FIXED BROWSER
FINGERPRINTING FLAW

XIAQYIN LIU

BSIDES MUNICH 2019

MARCH 25,2019

ABOUT ME

Independent bug bounty hunter

Graduated from University of North Carolina at Chapel Hill, United States

Recognized by Microsoft, Google, Brave Browser, Tor Project and more

Areas of interest:Windows applications, web browsers

OUTLINE

Browser fingerprinting issues

Background of a fingerprinting flaw, Sniffly

First bypass

Second bypass

Takeaways

CVE-2017-0135

BROWSER FINGERPRINTING ISSUES

* Fingerprinting is privacy issues

* Some browser vendors, like Tor Browser, are more interested in fixing fingerprinting

issues than Chrome, Firefox, Edge, etc.

* Examples: HSTS super cookie, CSS Visited, etc.

SNIFFLY ATTACK

* Discovered by Yan Zhu in 2015

* Abusing HSTS/301 redirect and CSP to probe user’s browsing history

 CVE-2016-1617

HTTP STRICT TRANSPORT SECURITY (HSTS)

* A browser security feature that enforces HTTPS for all connections for particular

domains

* Strict-Transport-Security: max-age=604800

CONTENT SECURITY POLICY (CSP)

* Security feature to mitigate XSS attacks

* Content-Security-Policy: script-src ‘self” www.google.com; img-src ‘self’; default-src ‘none’

* CSP is also used to enable other security features, like Upgrade Insecure Requests.

http://www.google.com/

HOW SNIFFLY WORKS

* Attacker embeds an image tag

* Attacker knows that example.com is either a HSTS domain or 301 redirects to HTTPS

* |f a visitor has never visited http://example.com:

/NS

http://example.com Location: https://example.com web page

https://github.com/diracdeltas/sniffly

http://example.com/
http://example.com/

HOW SNIFFLY WORKS

* |If a visitor has visited http://example.com:

NN

http://example.com Location: https://example.com web page

http://example.com/

HOW SNIFFLY WORKS

* If we can time how long it takes to receive the redirect response, we can distinguish if it’s

an in-browser redirect or a network redirect.
* Use CSP to allow http requests but block https requests:

* Content-Security-Policy: img-src http://example.com

. INTERMET

http://example.com Location: https://example.com

error event fired here

http://example.com/

HOW SNIFFLY WORKS

* If the error event is triggered within a threshold (10ms), it’s an internal redirect. Then

this URL has been visited before; otherwise, it has not been visited.

THE CODE SNIPPET

ool CSPSource: :schemeMatches(const KURL& url) const
{
if (m_scheme.isEmpty()})
return m_policy-»protocolMatchesSelf(url);
if (equallgnoringCase{m_scheme, "http"))
return equallgnoringCase{url.protocol{), "http") || equallgnoringCase{url.protocol(), "https");

if (equallgnoringCase{m_scheme, "ws"))

+ 4+ + o+

return equallgnoringCase{url.protocol{), "ws") || eguallgnoringCase({url.protocol(), "wss™):

return eguallgnoringCase{url.protocol(), m_scheme):

https://github.com/chromium/chromium/commit/568075bbc5d16239a5cbdeb579a8768f9836f1 3e

* Content-Security-Policy: img-src http://example.com

now matches both http://example.com and https://example.com

http://example.com/
http://example.com/
https://example.com/

BYPASSING THE FIX

* The code only considers the protocol, not port

e Consider this CSP rule:

Content-Security-Policy: img-src http://example.com:80

* Does it match https://example.com

http://example.com/

It turns out this CSP matches http://example.com:80 and https://example.com:80

It doesn’t match https://example.com:443

* So we can exploit Sniffly again!

CVE-2016-5137: https://bugs.chromium.org/p/chromium/issues/detail?id=625945

CVE-2016-907 | : https://bugzilla.mozilla.org/show bug.cgi?id=1285003

$1000 bounty

http://example.com/
https://example.com:80/
https://example.com/
https://bugs.chromium.org/p/chromium/issues/detail?id=625945
https://bugzilla.mozilla.org/show_bug.cgi?id=1285003

PATCH

bool CSPSource: :portMatches(const KURL& url) const
{
if (m_portWildcard == HasWildcard)

return true;

int port url.port();

if (port == m_port)

return true;

+ if (m_port == 80 && (port == 443 || (port == @ && defaultPortForProtocol{url.protocel()) == 443)))
return true;

+

https://github.com/chromium/chromium/commit/e6d 1814 17ea462ac221d768c960a21018266a4a8

CHANGE IN CSP SPECIFICATION

23 EEEE" index.src.html

b3 £ @2 -376,12 +376,18 @@ <h3 id="changes-from-level-2">Changes from Level 2<{/h3>

2, has been undeprecated, and a worker-src’ directive added. Both defer

to “child-src” if not present (which defers to “default-src” in turn).

- 3. Insecure schemes in source expressions now match their secure wvariants,
- and WebSocket schemes now match HTTP schemes. That is, “http:™ or “ws:”
- is eguivalent to “http: https:™, and "wss:” is eguivalent to " https:™.
- Similarly, “http://example.com” or “ws://example.com’ 1is eguivalent to

- “http: /fexample.com https:/fexample.com , and " wss://example.com 1is

eguivalent to " https://fexample.com .

3. The URL matching algorithm now treats insecure schemes and ports as
matching their secure wvariants. That is, the source expression
“http: /Sfexample.com:88° will match both “http://fexample.com:88° and
“https://example.com: 4437 .

+
+
+
+

https://github.com/w3c/webappsec-csp/commit/22d08b990290e49f5a666fad08de | 6d75bb36%e7

SECOND BYPASS

* So far both attacks use CSP to block the redirect

* Are there other ways to achieve the same!?

* Use Fetch API

FETCH API

A request has an associated redirect mode, which is "follow”, "error”, or "manual”. Unless stated otherwise, itis "follow".

“"follow"
Follow all redirects incurred when fetching a resource.

m L1
error

Return a network error when a request is met with a redirect.

"manual”

Retrieves an opaque-redirect filtered response when a request is met with a redirect so that the redirect can be followed manually.

FETCH API

let start_time = new Date();
fetch{url, {
method: “GET",
mode: “"no-cors™,
cache: "force-cache™,
redirect: "manual”
Hi.then{function (response) {
if (response.status == 381) {
let end time = new Date();
if (end_time - start_time < 18) {
alert{"visited");
T else {
alert{"not visited"};
¥
T else {
alert{"can't check™};

¥

11

FETCH API

* Reported in 2016. Not updated for more than 2 years.

* Silently fixed recently.

* In current Chrome,“no-cors” can’t be used together with “manual” redirect

@ vFetch API cannot load http://www.bankofamerica.com/. Request mode is "no-cors™ but the redirect mode is not "follow".

checkURL @ fetch.himl:31

(anonymous) @ fetch.hitml:64

TAKEAWAYS

* Reading disclosed vulnerability reports and the patches is helpful for finding new ones

* Try to find corner cases that developers may neglect to handle (e.g. explicit port in URL)

* Mainstream browser vendors are generally not interested in fixing fingerprint issues

ANOTHER VULNERABILITY

* This is not a fingerprinting issue. It is an example to show how | find a real vulnerability

by reading bug reports.

« CVE-2017-0135

CVE-2017-0135

* Inspired by paper “Abusing Internet Explorer 8's XSS Filters”, written by Eduardo Vela
Nava and David Lindsay

* How IE XSS Filter works: it checks if any URL parameter seems to be a XSS payload and

then checks if the parameter is contained in HTML response

* http://example.com/index.php?id=<script>alert(|)</script>

 If HTML body contains <script>alert(l)</script>, then it’s changed to
<sc#ipt>alert(l)</script>

CVE-2017-0135

What if it’s not a reflected XSS, but an expected |S code

E.g. example.com/index.php?<script src="jquery.js"></script>

<sc#tipt src="jquery.js"></script>

Then jquery.js won’t load

Seems harmless

CVE-2017-0135

* Abuse XSS Filter to disable CSP

* <meta http-equiv="Content-Security-Policy" content="script-src ‘self’">

* example.com/xss.html?<meta http-equiv="Content-Security-Policy” content="script-src ‘self’’>

CVE-2017-0135

<IDOCTYPE html:>
=l <html>
-] <head:>
<title»>CSP Test</title>
<meta http-equiv="Content-Security-Policy” content="script-src "self'":
</head>
- <bady>
<scriptralert(document.domain);</script:
</body>
</html>

CVE-2017-0135

ke + = (] “
N o o p
A — 3L = L
Sample text: To be, or not to be, that 1s the question
*

This site says...

®liu.cf

F12 DOM Explorer [ReEgEl Debugger Metwork &) Perfo Bbl? 8 x

D Don't let this page create more messages

oK

CVE-2017-0135

* Reported on December 2,2016. Fixed on March 14,2017.
* Bounty: $1500

* Microsoft removed XSS Filter in Edge in October 2018 Update

REFERENCES

* https://chromium.googlesource.com/chromium/src/+/master/docs/security/fag.md

e https://zyan.scripts.mit.edu/presentations/toorcon2015.pdf

* https://bugs.chromium.org/p/chromium/issues/detail?id=544765

* https://bugs.chromium.org/p/chromium/issues/detail?id=625945

 https://fetch.spec.whatwg.org/

e http://p42.us/ie8xss/Abusing |E8s XSS Filters.pdf

* https://blogs.windows.com/windowsexperience/2018/07/25/announcing-windows- | 0-insider-
preview-build-17723-and-build- 18204

https://zyan.scripts.mit.edu/presentations/toorcon2015.pdf
https://zyan.scripts.mit.edu/presentations/toorcon2015.pdf
https://bugs.chromium.org/p/chromium/issues/detail?id=544765
https://bugs.chromium.org/p/chromium/issues/detail?id=625945
https://fetch.spec.whatwg.org/
http://p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf
https://blogs.windows.com/windowsexperience/2018/07/25/announcing-windows-10-insider-preview-build-17723-and-build-18204

Q&A

* Thank you for your listening!

